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Abstract. In this paper we improve our approximate phase shifts of the electron wave functions by including
Coulomb distortion effects from medium and heavy nuclei on exclusive (e, e′p) reactions in the quasielastic
region. The new phase shifts are parameterized for the elastic electron scattering and work very well at
incident electron energies greater than 300 MeV. The structure functions with the new phase shifts for the
electron wave functions are extracted. We use a relativistic single-particle model as applied to 208Pb and
to recently measured data at CEBAF on 16O(e, e′p) to investigate the electron Coulomb distortion effects
and to extract the structure functions with the new phase shifts.

PACS. 25.30.Fj Inelastic electron scattering to continuum – 25.70.Bc Elastic and quasielastic scattering

1 Introduction

Electron scattering has long been acknowledged as one of
the most excellent tools for investigating nuclear struc-
ture and nuclear properties, especially in the quasielas-
tic region. One of the primary treatments is the plane-
wave Born approximation (PWBA) in which the elec-
tron Coulomb distortion is neglected. The cross-section
in the PWBA can be written as a sum of bilinear prod-
ucts of electron kinematics and nuclear structure functions
as a function of energy and momentum transfer. Various
structure functions for the process can be extracted from
the measured data by the so-called Rosenbluth separation
methods. In principle, the structure functions are indepen-
dently calculated in the PWBA calculations, since they
appear in the cross-section with different electron kine-
matics factors.

The inclusion of the electron Coulomb distortion in
elastic and inelastic scattering has been done to various
approximations in the past [1–5]. The Coulomb distor-
tion has been exactly treated by fully expanding par-
tial waves [6–9] of the electron wave functions, accord-
ing to a method called distorted-wave Born approxima-
tion (DWBA), obtained by numerically solving the radial
Dirac equation for a finite nuclear charge distribution. Al-
though the electron Coulomb distortion can be treated
exactly, this calculation presents numerical difficulties and
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the computational time increases rapidly with higher in-
cident electron energy. Furthermore, it is no longer possi-
ble to separate the cross-section into the various structure
functions with the partial-wave expansion in the presence
of the electron Coulomb distortion. Nevertheless, in the
early 1990s, the Ohio University group [6–11] treated the
electron Coulomb distortion for the exclusive (e, e′p) and
the inclusive (e, e′) reactions in the quasielasatic region
very well.

Another approach to the inclusion of the Coulomb dis-
tortion for a large momentum transfer was developed by
Knoll [12] in the early seventies. Lenz and Rosenfelder [13]
then constructed an approximate high-energy wave func-
tions given in analytic form by replacing the exact electron
wave functions. This approximation to the wave functions,
called the effective momentum approximation (EMA), was
shown to be good to first order in αZ for high-energy scat-
tering at short range, as shown by Giusti and Pacati. They
expanded the exponential phase shift operator [14]. How-
ever, it turned out that the expansion does not converge
very well [15] and the approximation is not good enough
for heavy nuclei. Traini and Covi, with a realistic nuclear
model, obtained good agreement with experimental data
by using the EMA calculation [16].

To avoid these difficulties, recently the Ohio group [17–
19] developed an approximate treatment of the Coulomb
distorted electron wave functions, which contains an r-
dependence instead of the static Coulomb potential which
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is evaluated at the origin in the effective momentum,
hence called the local effective momentum approximation
(LEMA). These wave functions have a “plane-wave–like”
form that directly allows the extraction of the various
structure functions from the cross-section as in the PWBA
calculation. The Ohio group compared their approximate
treatment of Coulomb distortion to the full DWBA re-
sults and found a good agreement of about 1-2% near
the peaks of the cross-section even for a heavy nucleus
like 208Pb. In carrying out these calculations the range
of the incident electron energies was restricted to 300-
500 MeV. Recently, a new experiment was performed with
incident electron energies higher than 2000 MeV at CE-
BAF [20]. In this energy range, it is very difficult to include
the Coulomb distortion because many partial waves are
needed. But Kim and Wright [21] introduced an improved
“plane-wave–like” form for the wave functions, called the
approximate DWBA, by parameterizing the phase shifts.
Their results describe the experimental data from CEBAF
very well.

The Ohio group calculation of the (e, e′) reactions used
the same potential for both bound and continuum states
to avoid the violation of orthogonality, current conserva-
tion, and gauge invariance [7]. In the calculation (single-
particle model), the knocked-out nucleon does not neces-
sarily leave the nucleus without further interaction. How-
ever, since the subsequent interactions do not affect the
(e, e′) cross-sections, the potential used does not contain
an absorptive part. The free Dirac current operator was
used in the calculations, and the bound and continuum
wave functions were solutions to the Dirac equation with
the scalar and the vector potential calculated in the rela-
tivistic Hartree model. The results of this model are shown
to be relatively high in comparison to the data on the lon-
gitudinal response function. For the transverse response
functions the calculations at backward angle were smaller
than the data. The calculations were carried out in the
quasielastic region and the meson exchange current as well
as the ∆ excitation were not taken into account. From
these comparisons, it appears that the meson exchange
current and the ∆ excitation need to be taken into account
on the transverse response functions at backward angle (or
large energy transfer). The approach of the Ohio group is
less time consuming in comparison with a full DWBA pro-
cedure, but has some ad hoc assumptions: they choose the
momentum transfer q(r) instead of the asymptotic mo-
mentum transfer q along the ẑ-axis, so that they use the

local electron kinematics
(

q(r)2µ
q(r)2

)2

, etc., as factorizing the
Rosenbluth terms inside the integrations in order to avoid
destroying the separable form. They also use an ad hoc
term to avoid the numerical difficulty involved in the elec-
tron phases. For the case of positron scattering, their cal-
culation shows a discrepancy with new experimental data
measured at Saclay [22]. Recently, the Ohio group cal-
culated the positron scattering with the inclusion of the
average of the electron phases [23], but they still found
disagreement with the experimental data.

On the other hand, the structure functions cannot be
directly extracted from the measured cross-section, but

it is possible to extract a couple of functions, the fourth
and the fifth structure functions which embody the left-
right and up-down asymmetries of the cross-section, mea-
sured with respect to the missing momentum, by using the
PWBA formalism. The structure functions for the (e, e′p)
reactions are affected by the final-state interaction of the
knocked-out proton. Once the initial nucleon wave func-
tion is known, the structure functions provide information
on the final-state interaction and on the nuclear struc-
ture, that is, the propagation of the knocked-out proton
in the nucleus. Thus, each structure function might be
useful to discriminate among theoretical models. Espe-
cially, the fifth structure function is known to vanish in
the absence of the final-state interactions of the knocked-
out proton [24]. In this case, the extraction of the fifth
structure function requires a polarized incident electron
beam.

In sect. 2 of this paper, we briefly review the previ-
ous approximation of the Coulomb distorted electron wave
functions and present a greatly improved parameterization
of the phase shifts. We apply the new phase shifts to heavy
nuclei like 208Pb. In sect. 3, we introduce a formalism for
the (e, e′p) reactions and a method to extract the second,
fourth, and fifth structure functions and the asymmetry
using the approximate DWBA calculation. A relativistic
Hartree single-particle model (σ-ω model) for the bound
state [25] and a relativistic optical model for the outgoing
proton [26] are used. We calculate the extracted structure
functions and asymmetry from the p1/2 and p3/2 orbits of
the 16O(e, e′p) reaction and compare them with the new
experimental data measured at CEBAF [20] in sect. 4.
Conclusions are given in sect. 5.

2 Phase analysis

In an approximate way, Kim and Wright [18] constructed
the following “plane-wave–like” electron wave functions
which contain the effect of the static Coulomb distortion
of the target nucleus:

Ψ±(r) =
p′(r)

p
e±iδ(L2) ei∆ eip′(r)·r up , (1)

where the phase factor δ(L2) is a function of the square
of the angular momentum operator, up denotes the Dirac
spinor, and the local effective momentum p′(r) is given in
terms of the Coulomb potential of the target nucleus by

p′(r) =
(

p − 1
r

∫ r

0

V (r)dr

)
p̂ . (2)

We referred to this r-dependent momentum as the LEMA.
The ad hoc term ∆ = a[p̂′(r)·r](J2 + 1

4 ) denotes a small
higher-order correction which involves a = −αZ(16/p)2.
The number 16 is given in MeV/c and was determined by
comparison with the exact partial-wave result. Since the
eigenvalues of J2 = (L + S)2 are j(j + 1) which is equal
to κ2 − 1

4 , the phase factor could be expanded up to the



K.S. Kim et al.: Phase shift analysis and extraction of structure functions... 149

second-order term and fitted to the exact phases with the
equation

δκ = b0 + b2κ
2 + b4κ

4 , (3)

where the coefficients, b0, b2, b4 are fitted values. κ is a
Dirac quantum number. We referred to these phases as
the κ2-dependent phases. The phases work very well for κ
values up to approximately κ = 3pR ≈ 35 at medium or
low energy, but break down for κ = 3pR ≥ 50. p denotes
the electron momentum and the nuclear radius R is given
by R = 1.2A1/3 − 0.86/A1/3.

In order to solve this problem, we build new approx-
imate phase shifts which can be applied to any inci-
dent energies and any κ values. The phases due to the
Coulomb distortion of the target nucleus approach the
point Coulomb phases for very high κ values (long dis-
tance from the target). It is difficult to fit the part around
the surface of the target nucleus. We use the exact phase
values at κ = 1 and at κ = pR and then, we solve the
equation of the approximate phases. Hence, we obtain the
new phase shifts for a large incident electron energy as

δ(κ) =

[
a0 + a2

κ2

(pR)2

]
e
− 1.4κ2

(pR)2

−αZ

2
(1 − e

− κ2

(pR)2 )×ln(1 + κ2) . (4)

We fit the two constants a0 and a2 to two of the elastic
scattering phase shifts (κ = 1 and κ = Int(pR) + 5). To
have a very good approximation, we put a0 = δ(1) and
a2 = 4δ(Int(pR)+5)+αZln(2pR). As shown in fig. 1, the
κ2-dependent phases break down for high κ values, but
the new phases reproduce the exact phases very well for
16O with an electron energy E = 2400 MeV. However, the
new phases have a small discrepancy in comparison with
the exact phase around κ = 30, i.e., around the surface of
the target nucleus. Since we choose the maximum κ value
to be κmax = 3pR ≈ 100, κ = 30 is around the surface of
the target nucleus. We refer to this new phase shift plus
the LEMA as the approximate DWBA.

With the approximate DWBA discussed in the above
paragraph, we construct the new “plane-wave–like” wave
functions for the incoming and outgoing electrons. Since
the only spinor dependence is in the Dirac spinor, all the
Dirac algebra goes through in the common manner. The
four-potential for the electron current becomes a Möller-
type potential which contains an r-dependent momentum
transfer q(r). Using “plane-wave–like” electron wave func-
tions, the corresponding cross-section can be separated
into nuclear structure functions as in the PWBA formal-
ism. Consequently, the structure functions can be directly
calculated even in the presence of the electron Coulomb
distortion. A detailed discussion can be found in refs. [17,
18]. In the present work we compare the directly calculated
structure functions with the structure functions extracted
in sect. 3.

As a test case, we calculate the reduced cross-section
of the (e, e′p) reactions with the new phases for a heavy

δ

Fig. 1. Comparison between the exact, κ2-dependent, and the
new phases in 16O for κmax = 100 and energy E = 2441 MeV.
The diamonds are the exact phases, the dashed curve is the κ2

fit, and the solid curve the new phase shifts parameterization.

nucleus. If the electron and the outgoing proton are de-
scribed as plane waves, the reduced cross-section

ρm(pm) =
1

pEσep

d3σ

dEfdΩfdΩp
, (5)

is the probability that the proton, bound in a given
shell, is met inside the nucleus with missing momentum
pm = p − q. The off-shell electron-proton cross-section
σep denotes the form “cc1” given by de Forest [27]. Fig-
ure 2 shows the reduced cross-sections as a function of
the missing momentum pm for the 3s1/2 energy shell of
208Pb. The kinematics are the incident electron energy
Ei = 412 MeV, and the outgoing proton kinetic energy
Tp = 100 MeV. The solid line is the result of the full
DWBA [7], the dashed curve is the result with the new
phase shifts, and the dotted curve is the result with the
κ2-dependent phases. The dashed curve obtained with the
new phases describes the full DWBA result better than the
κ2-dependent phases result over the whole region.

3 Extraction of structure functions

We choose the nucleus in a fixed frame where it is placed
at the origin of the coordinate system in the laboratory
reference frame. As shown in fig. 3, the incoming electron
with four-momentum pµ

i = (Ei, pi) and the outgoing elec-
tron with pµ

f = (Ef , pf ) define the scattering plane (x-z
plane). The knocked-out proton with pµ = (E,p) and
four-momentum transfer qµ = pµ

i − pµ
f define the reaction

plane. We choose the ẑ-axis along the momentum trans-
fer q direction. In the PWBA, the cross-section for the
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Fig. 2. The reduced cross-sections for 208Pb for the 3s1/2 orbit
with perpendicular kinematics. The kinematics are Ei = 412
MeV and the proton kinetic energy Tp = 100 MeV. The solid
line is the full DWBA result, the dashed line is the approximate
DWBA using the new phase shifts parameterization, and the
dotted line is the approximate DWBA with the κ2-dependent
phases.
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Fig. 3. The coordinate system for the (e, e′p) process.

(e, e′p) reactions with incoming polarized electron beam
can be written as

d3σ

dEfdΩfdΩp
= K[vLRL + vT RT + vTT cos2φpRTT

+vLT cosφpRLT + hvLT ′sinφpRLT ′ ] , (6)

where q2
µ = ω2 − q2 is the four-momentum transfer, and

RL, RT , RTT , RLT , and RLT ′ are the longitudinal, trans-
verse, transverse-transverse, longitudinal-transverse, and
polarized longitudinal-transverse structure functions, i.e.,
the so-called first, second, third, fourth, and fifth struc-
ture functions, respectively. φp is the azimuthal angle of
the outgoing proton measured with respect to the electron

scattering plane, and h is the helicity of the initial electron.
The electron kinematics factor is given by K = pEσM

(2π)3 , with
σM the Mott cross-section, and the functions vL, vT , etc,
depend only on the electron kinematics and are given by

vL =
q4
µ

q4
, vT = tan2 θ

2
− q2

µ

2q2
, vTT = − q2

µ

2q2
,

vLT = −q2
µ

q2

(
tan2 θ

2
− q2

µ

q2

)1/2

, vLT ′ = −q2
µ

q2
tan

θ

2
, (7)

where θ represents the electron scattering angle. The
structure functions are defined as

RL = W00 , RT = W11 + W22 ,

cos2φpRTT = W11 − W22 ,

cosφpRLT = W01 − W10 ,

sinφpRLT ′ = −i(W02 + W20) , (8)

where the nuclear tensor Wµν is given in terms of a sum
over the bound and final spin projections of the proton:

Wµν =
∑
sisf

N∗
µNν . (9)

The quantity Nµ is the Fourier transform of the nucleon
current density and is given by

Nµ =
∫

Jµeiq·r d3r. (10)

The nucleon current is given by

Jµ(r) = eψ̄f (r)
(

F1γ
µ + F2

iµp

2M
σµνqν

)
ψb(r) , (11)

where F1 and F2 are the Dirac and the Pauli nucleon
form factors and µp = 1.793 denotes the proton anoma-
lous magnetic moment. The wave function for the bound
state ψb is taken from a relativistic Hartree model [25].
The final-state wave function ψf is obtained by solving
the Dirac equation with an optical potential which comes
from the analysis of the elastic proton scattering data [26].

In the full DWBA calculations when the electrons
are described by the distorted Coulomb waves, the cross-
section is no longer separated and takes on a form different
from eq. (6):

d3σ

dEfdΩfdΩp
=

1
2

2π

Iin
ρeρp

∑
|Hi|2 , (12)

where the summation is over the final-states with an av-
erage over the initial states and ρe (ρp) is the density of
states of the electron (proton), given by pE

(2π)3 . Iin denotes
the initial flux of electrons given by p

E . Hi is the transition
matrix element

Hi = −4π

∫
jµ(r)G(r, r′)Jµ(r′)d3rd3r′ , (13)
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where jµ(r) = eψ̄fγµψi denotes the electron current. ψf

and ψi are the final and initial electron wave functions
distorted by the static Coulomb potential of the target
nucleus. Jµ(r′) is given by eq. (11). The Green’s function
for the electromagnetic field is denoted by G(r, r′).

While a separation as in eq. (6) cannot be allowed
in the DWBA calculation, the fourth structure function
could be obtained by subtracting the cross-sections at
azimuthal angles of the outgoing proton φp = 0 and
φp = π and keeping the other electron and outgoing pro-
ton kinematics variables fixed. We call a quantity so deter-
mined the apparent fourth structure function. The appar-
ent fourth structure function is a function of the missing
momentum given by

RLT =
σR − σL

2KvLT
, (14)

where L (left) and R (right) indicate the left side at φp = 0
and the right side at φp = π of the cross-section, re-
spectively. Of course, this fourth structure function can
be directly calculated in the PWBA. If the incident elec-
tron beam is polarized, helicity h=1, one can obtain the
fifth structure function by subtracting the down part
(−π < φp < 0) from the up part (0 < φp < π) of the
cross-section with respect to the scattering plane, while
all other kinematics variables are kept the same. The ap-
parent fifth structure function can be written as

RLT ′ =
σU − σD

2KvLT ′sinφp
, (15)

where U and D indicate the “up” and “down” part of
the cross-section, respectively. This clearly describes the
“up-down” asymmetry of the cross-section with respect to
the scattering plane. We also calculate another left-right
asymmetry, ALT , defined as

ALT =
σR − σL

σR + σL
. (16)

In this case, the kinematics is the same as for the fourth
structure function in eq. (14).

On the other hand, by adding the left side and the
right side of the cross-section, one can obtain the second
structure function as

σR + σL

2KvT
= RT + x(θ)

(
RL +

vTT

vL
RTT

)
, (17)

where x(θ) = vL

vT
is a function of the electron scattering

angle θ. In this procedure, it is possible to perform several
experiments by changing only the incident electron en-
ergy and keeping the four-momentum transfer and proton
kinematics variables fixed. Equation (17) is a linear func-
tion of the variable x(θ) like the Rosenbluth separation.
Conventionally from eq. (17), one can obtain the constant
term which becomes the second structure function and
the slope which is a mixing of the first and third structure
function.

d3 σ
/d

E
f 
dΩ
eΩ

P 
(n

b/
M

eV
 s

r2 )

Fig. 4. The cross-sections from the p1/2 and p3/2 orbits of 16O
targets as a function of the missing momentum. The incident
electron energy is 2441.6 MeV, the proton kinetic energy is 427
MeV, and the energy transfer is 436 MeV. The solid lines are
the approximate DWBA calculations, the dotted lines are the
PWBA calculations, and the data are from CEBAF [20].

4 Results

In our analysis we investigate the effect of the Coulomb
distortion on the structure functions and the left-right
asymmetry with respect to the magnitude of the missing
momentum. There are two kinematics in (e, e′p) experi-
ments. One is the parallel kinematics where the outgoing
proton momentum p is along the momentum transfer q.
In this case, the three interference structure functions in
eq. (6) disappear. The other one is the perpendicular kine-
matics, the so-called ω-q constant kinematics, where the
magnitude of p is fixed and the polar angle of p changes
with respect to q. We choose only the perpendicular kine-
matics in order to extract the interference structure func-
tions. Note that all calculations are carried out in the lab-
oratory frame (target fixed frame) and include the proton
final-state interaction described by a relativistic optical
potential which is obtained from fitting the elastic proton
scattering [26]. The outgoing proton is knocked-out from
two outer orbits, p1/2 and p2/3, of the 16O.

In fig. 4, we show the cross-sections as a function of
the missing momentum. The electron incoming energy is
given by Ei = 2441.6 MeV, the ejected proton kinetic en-
ergy by Tp = 427 MeV, and the energy transfer by ω = 436
MeV. The four-momentum transfer is Q2 = q2 −ω2 = 0.8
(GeV/c)2. The scattering angle is θ = 23.3◦. The solid
lines are the approximate DWBA results, the dotted lines
are the PWBA results, and the diamonds are data from
CEBAF [20]. Note that the full DWBA code cannot eval-
uate such high electron energy processes, because it needs
many angular momentum summations and extensive mod-



152 The European Physical Journal A

3
LT

Fig. 5. The fourth structure functions from the p1/2 and p3/2

orbits of 16O as a function of the missing momentum. The solid
lines and the dashed lines are, respectively, the apparent and
directly extracted fourth functions for the DWBA results, the
dotted lines are the PWBA results, and the diamonds are data
from CEBAF [20]. The kinematics is the same as in fig. 4.

ifications. Both the PWBA and approximate DWBA re-
sults reproduce the experimental data very well. As we
expected, the effects of the Coulomb distortion are very
small. We perform a linear least χ2 fit to the data using
our relativistic single-particle model for the bound-state
wave functions and obtain the spectroscopic factors 0.61
for p1/2 and 0.7 for p3/2. In the previous work [8] at lower
electron energies using the same nuclear model the spec-
troscopic factors were 0.54 for p1/2 and 0.57 for p3/2 in
comparison with the experimental data from Saclay [28].

In the previous calculations [8,29], the effects of the
Coulomb distortion on the cross-sections are of the order
of 3%, 7% and 30% for 16O, 40Ca, and, 208Pb, respec-
tively. But, the effects on the fourth structure functions
for 16O and 40Ca are about 12–15%, while those on the
fourth structure function for 208Pb are higher by a factor
of 2 and those on the fifth structure function are about
50% [8,18]. In these calculations, the Coulomb distortion
does not affect the shape of the fourth and fifth structure
function calculated by the PWBA, although the effect on
the magnitude is much greater for these functions than for
the corresponding cross-sections.

Figure 5 shows the fourth structure functions with
the same kinematics as in fig. 4. The solid lines and the
dashed lines are, respectively, the apparent and the di-
rectly extracted fourth functions from the approximate
DWBA results, the dotted lines are the PWBA results,
and the diamonds are the data from CEBAF [20]. In the
low missing momentum range (≤ 150 MeV/c), the differ-
ences between the solid lines and the dotted lines are of
the order of 10% for the p1/2 orbit and 5% for the p3/2

3
LT

Fig. 6. The fifth structure functions for 16O targets. The az-
imuthal angle of the knocked-out proton is φp = 40◦. The solid
lines and the dashed lines are, respectively, the apparent and
directly extracted fourth functions for DWBA results and the
dotted lines are the PWBA calculations.

orbit, while the differences between the dashed lines and
the dotted lines are around 2-3% for both orbits. The dis-
crepancy among the solid, the dashed and the dotted lines
suggests that the directly calculated fourth structure func-
tions and the apparent fourth structure functions depend
on the azimuthal angle of the outgoing proton. Although
the separation does not result in a perfect extraction of the
structure function, the directly calculated fourth structure
functions contain enough physics, i.e., the transition cur-
rent and the transition density of the target are involved.
Of course, for the PWBA calculation the apparent fourth
structure function agrees exactly with the directly calcu-
lated fourth structure function. Furthermore, although the
effects of the electron Coulomb distortion are very small
for the cross-section at high incident energy, the effect
on the apparent fourth structure functions is a change
of about 5-10%. In these calculations, we use the spec-
troscopic factors extracted from the cross-sections. The
shapes generated by the approximate DWBA calculation
are the same as these generated by the PWBA calculation
in the positions of the minimum and maximum. We also
find out that the theoretical calculations for the fourth
structure functions and for the cross-sections may need
different spectroscopic factors in order to show good agree-
ment with the data. However, the fourth structure func-
tions extracted from the cross-sections may not be well
determined due to experimental uncertainties.

In fig. 6, we calculate the fifth structure functions for
p1/2 and p3/2 of 16O at fixed azimuthal angle φp = 40◦ of
the knocked-out proton and with the same electron kine-
matics as in fig. 4. The solid lines are the apparent and the
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Fig. 7. The asymmetry for the 16O target. The kinematics is
the same as in fig. 4.

dashed lines are the directly extracted fifth functions for
the approximate DWBA results and the dotted lines are
for the PWBA results. As for the fourth structure func-
tions, the differences between the PWBA and the directly
calculated fifth structure functions are around 2-3%, but
those for the apparent fifth structure functions appear to
be higher by a factor of 2 at the low missing momentum
(≤ 150 MeV/c). However, the electron Coulomb distor-
tion does affect the magnitude of the amplitude of the
fifth structure functions, but not their shape as we found
for the fourth structure function. Notice also that we used
the same spectroscopic factors as in fig. 4.

As shown in fig. 7, we also investigate another asym-
metry, the so-called left-right asymmetry given in eq. (16).
The kinematics is the same as in fig. 4. Particularly, since
this quantity does not require any spectroscopic factor,
it is possible to compare the theoretical result with the
experimental data. From these theoretical calculations we
show that our model for a bound state, the σ-ω model,
describes the experimental data reasonably well when the
missing momentum is less than 300 MeV/c. The elec-
tron Coulomb distortion does not change the basic shape
of the left-right asymmetry, although the amplitudes are
changed by small amount at low missing momentum (less
than 100 MeV/c). These asymmetry functions clearly
show a Coulomb effect of about 10% at low missing mo-
mentum.

In fig. 8 and fig. 9, we show the second structure func-
tions RT and RL + vT T

vL
RTT functions in terms of the

missing momentum by applying the Rosenbluth separa-
tion method with three incident electron energies. The
incident electron energies are Ei = 2441.6, 1642.5, and
843.2 MeV and the corresponding scattering angles are
θ = 23.3◦, 37.2◦, and 100.7◦, respectively. Here, we use

3
LT

Fig. 8. The second structure functions extracted using the
Rosenbluth separation by changing the incident electron ener-
gies. The incident electron energies are Ei = 2441.6, 1642.5,
and 843.2 MeV. The solid lines are the approximate DWBA
calculations and the dotted lines are the PWBA calculations.

R
L
 +

(v
T

T
 /v

L
) 

R
T

T
 (f

m
3)

Fig. 9. The RL + vT T
vL

RTT functions by using the same pa-
rameters as in fig. 8.

the same values as in fig. 4 for the knocked-out proton
kinetic energy, Tp = 427 MeV, and for the energy trans-
fer, ω = 436 MeV. The four-momentum transfers are also
fixed as Q2 = 0.8 (GeV/c)2. The peaks for these struc-
ture functions lie on the same positions as for the cross-
sections. The electron Coulomb effects on the peaks are
very small as for the cross-sections but slowly increase on
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the side parts. The effects on the second structure function
appear smaller than those on the RL + vT T

vL
RTT function.

This clearly shows that the Coulomb effects on the longi-
tudinal term are larger than those on the transverse term
because the charge mainly contributes to the longitudinal
function. In this case, one cannot compare the apparent
and the directly calculated second structure function be-
cause of the different incident electron energies used.

5 Conclusion

We have improved our previous approximate method of
including Coulomb distortion effects in (e, e′p) reactions
from nuclei. The improvement involves a better parame-
terization of the elastic scattering phase shifts which have
the correct behaviour for large angular momenta and re-
quire the calculation of only two exact phase shifts (for
κ = 1, and for κ equal to Int(pR) + 5). We show that for
the (e, e′p) reaction on 208Pb the cross-section calculated
with our approximation using the improved parameteri-
zation of the phase shifts agrees quite well with the full
DWBA result even beyond the second maximum. This is a
significant improvement over the previous approximation
for the phase shifts.

In addition, we compare our relativistic single-particle
model for the (e, e′p) reaction from 16O with the recently
measured cross-section at CEBAF with respect to the
p3/2 and p1/2 shells and investigate the effects of the elec-
tron Coulomb distortion on the cross-sections, the second,
the fourth, the fifth structure functions, and the left-right
asymmetry. The approximate DWBA and PWBA calcula-
tions describe the experimental data for the cross-sections
very well and the Coulomb effects are very small. We
obtain values of the spectroscopic factors equal to 0.61
for p1/2 and to 0.7 for p3/2. The effects of the electron
Coulomb distortion on the structure functions consider-
ably affect the magnitude, while the basic shape and the
positions of the maximum and minimum are not changed.
We show that it is possible to directly calculate the fourth
and fifth structure functions in the presence of the elec-
tron Coulomb distortion, although the directly calculated
structure functions do not agree exactly with the apparent
structure functions. In particular, the fifth structure func-
tion describes the final-state interaction, and the left-right
asymmetry does not require the spectroscopic factor. By
means of the Rosenbluth separation method, it is found
that the Coulomb effects on the transverse part are smaller
than those on the longitudinal part.

Our improved approximate method of including
Coulomb distortion in electron scattering reactions works
for high-energy electrons as well as for more moderate
energies (300-500 MeV), and for experiments at a few
percent level this approximate way of including Coulomb
distortion is adequate. The “plane-wave–like” approxima-
tion permits the extraction of “structure functions” even
in the presence of strong Coulomb effects and thus pro-
vides a very good tool for looking into the response of the
target nucleus. We suggest that the experiment might be

performed for heavy nuclei but with a change of kine-
matics (from perpendicular to parallel). In particular,
if the experiment is performed with parallel kinematics,
one can investigate the contribution of the longitudinal
term (charge part) by applying the Rosenbluth separation
method, so that one can know the effects of the Coulomb
distortion, more in detail.

This work was supported by the Korea Research Foundation
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